The absolute value of a quantity is represented by surrounding it with vertical bars. Some examples are:
$$ \begin{align} |3| &= 3 \\[5pt] |-3| &= 3 \\[5pt] |(-1)| &= 1 \end{align}$$
$$ \begin{align} |7x| &= 7|x| \\[5pt] |-7x| &= 7|x| \\[5pt] |-0.2| &= 0.2 \end{align}$$
$f(x) = |x|$ is a function because it assigns to each x one and only one y value. Here is a graph of the function $y = |x|$ or $f(x) = |x|.$
Notice that $f(-1) = f(1) = 1.$ If you're not too familiar with the language of functions, just notice that the absolute value bars "cancel" any negative signs inside.
Consider the absolute value equation
$$|x| = 8$$
There are two solutions, x = 8 and x = -8, because the absolute value function will convert either to positive 8. So $x = ±8.$
Let's take a look at another one:
$$|x| = -5$$
This equation has
We use the same method to solve more complicated absolute-value equalities. For example,
$$|x - 4| = 11$$
To solve such an equation, we notice that both $(x - 4)$ and $-(x - 4)$ must solve it, so we have $x - 4 = 11$ and $-x + 4 = 11,$ giving $x = 15$ and $x = -7.$
We solve absolute-value inequalities just like equalities, except for the usual caveat that if we multiply or divide by a negative number, we must change the direction of the inequality symbol, < ↔ >, ≤ ↔ ≥.
The best way to learn about absolute-value inequalities is by example, so here are a few examples, with some practice problems (with solutions) at the end.
Solve: $|x| \gt 12$
$x \gt 12$ and $-x \gt 12.$
The first inequality is straightforward. For the second, we divide (or multiply) by -1, remembering to switch the inequality sign, to get $x \lt -12.$
We can sketch a graph of this solution like this:
We can sketch a graph of this solution like this:
The set of possible solutions is the union (collection) of two sets. We write it as
$$x \in (-\infty, -12) \cup (12, \infty).$$
Solve: $|3x - 4| \le 7$
$$ \begin{align} 3x - 4 &\le 7 \\[5pt] 3x &\le 11 \\[5pt] x &\le \frac{11}{3} \end{align}$$
The second is
$$ \begin{align} -(3x - 4) &\le 7 \\[5pt] -3x + 4 &\le 7 \\[5pt] -3x &\le 3 \\[5pt] x &\ge -1 \end{align}$$
The number line for this solution like this:
Notice that the solutions to both equations are in the region where the individual solutions overlap. The set notation for this set of solutions is
$$x \in \left[-1, \; \frac{11}{3} \right]$$
Remember that square brackets mean that the endpoints are included in the solution set.
Solve: $|2x + 3| \ge 1$
$$ \begin{align} 2x + 3 &\ge 1 \\[5pt] 2x &\ge -2 \\[5pt] x &\ge -1 \end{align}$$
The second is:
$$ \begin{align} -(2x + 3) &\ge 1 \\[5pt] 2x + 3 &\le -1 \\[5pt] 2x &\le -4 \\[5pt] x &\le -2 \end{align}$$
The number line for this solution like this:
The set notation for this set of solutions is
$$x \in (-\infty, \; -2] \cup [-1, \; \infty)$$
Remember that square brackets mean that the endpoints are included in the solution set. We use round brackets on ∞ limits because ∞ isn't really a number that could be included.
Solve: $-3|2x + 5| + 6 \ge -12$
$$ \begin{align} -3|2x + 5| + 6 &\ge -12 \\[5pt] -3|2x + 5| &\ge -18 \\[5pt] |2x + 5| &\le 6 \end{align}$$
Now we can separate that inequality into two. You can think of this as "resolving" the absolute value. The first is
$$ \begin{align} 2x + 5 &\le 6 \\[5pt] 2x &\le 1 \\[5pt] x &\le \frac{1}{2} \end{align}$$
The second is:
$$ \begin{align} -(2x + 5) &\le 6 \\[5pt] 2x + 5 &\ge -6 \\[5pt] 2x &\ge -11 \\[5pt] x &\ge -\frac{11}{2} \end{align}$$
The number line for this solution like this:
The set notation for this set of solutions is
$$x \in \left[-\frac{11}{2}, \; \frac{1}{2}\right]$$
Solve the inequality for x, show the set of solutions on a number line and write the solutions in set notation.
1. |
$|x| \lt 5$ Solution$$ \begin{align} \color{#E90F89}{\text{I.}} \: x &\lt 5 \\[9pt] \color{#E90F89}{\text{II.}} \: -x &\lt 5 \\[5pt] x &\gt -5 \end{align}$$ $x \in (-5, \; 5)$ |
2. |
$|x + 2| \le 4$ Solution$$ \begin{align} \color{#E90F89}{\text{I.}} \: x + 2 &\le 4 \\[5pt] x &\le 2 \\[9pt] \color{#E90F89}{\text{II.}} \: -(x + 2) &\le 4 \\[5pt] x + 2 &\ge -4 \\[5pt] x &\ge -6 \end{align}$$ $x \in [-6, \; 2]$ |
3. |
$|3x + 7| \le 19$ Solution$$ \begin{align} \color{#E90F89}{\text{I.}} \: 3x + 7 &\le 19 \\[5pt] 3x &\le 12 \\[5pt] x &\le 4 \\[9pt] \color{#E90F89}{\text{II.}} \: -(3x + 7) &\le 19 \\[5pt] 3x + 7 &\ge -19 \\[5pt] 3x &\ge -26 \\[5pt] x &\ge \frac{-26}{3} \approx -9 \end{align}$$ $x \in [-9, \; 4]$ |
4. |
$|5x - 2| \gt 19$ Solution$$ \begin{align} \color{#E90F89}{\text{I.}} \: 5x - 2 &\gt 19 \\[5pt] 5x &\gt 21 \\[5pt] x &\gt \frac{21}{5} \\[9pt] \color{#E90F89}{\text{II.}} \: 2 - 5x &\gt 19 \\[5pt] -5x &\gt 17 \\[5pt] x &\lt \frac{-17}{5} \end{align}$$ Note that $2 - 5x = -(5x - 2).$ $x \in (-\infty, \; -\frac{17}{5}) \cup (\frac{21}{5}, \; \infty)$ |
5. |
$\left| \frac{3x - 2}{9} \right| \ge 1$ Solution$$ \begin{align} \color{#E90F89}{\text{I.}} \: \frac{3x - 2}{9} &\ge 1 \\[5pt] 3x - 2 &\ge 9 \\[5pt] 3x &\ge 11 \\[5pt] x &\ge \frac{11}{3} \\[9pt] \color{#E90F89}{\text{II.}} \: \frac{-(3x - 2)}{9} &\gt 1 \\[5pt] -(3x - 2) &\ge 9 \\[5pt] 3x - 2 &\le -9 \\[5pt] 3x &\le -7 \\[5pt] x &\lt \frac{-7}{3} \end{align}$$ $x \in (-\infty, \; -\frac{7}{3}] \cup [\frac{11}{3}, \; \infty)$ |
6. |
$\left| 3 - \frac{3}{4} x \right| \ge 9$ Solution$$ \begin{align} \color{#E90F89}{\text{I.}} \: 3 - \frac{3}{4}x &\ge 9 \\[5pt] -\frac{3}{4}x &\ge 6 \\[5pt] x &\le \frac{6 \cdot 4}{-3} \\[5pt] x &\le -8 \\[9pt] \color{#E90F89}{\text{II.}} \: \frac{3}{4}x - 3 &\ge 9 \\[5pt] \frac{4}{4}x &\ge 12 \\[5pt] x &\ge \frac{12 \cdot 4}{3} \\[5pt] x &\ge 16 \end{align}$$ $x \in (-\infty, \; -8] \cup [16, \infty)$ |
7. |
$5|2x + 3| -3 \ge 8$ First isolate the absolute value expression: $$ \begin{align} 5|2x + 3| -3 &\ge 8 \\[5pt] 5|2x + 3| &\ge 11 \\[5pt] |2x + 3| &\ge \frac{11}{5} \end{align}$$ Solution$$ \begin{align} \color{#E90F89}{\text{I.}} \: 2x + 3 &\ge \frac{11}{5}\\[5pt] 2x &\ge \frac{11-15}{5} \\[5pt] x &\ge \frac{-2}{5} \\[9pt] \color{#E90F89}{\text{II.}} \: -(2x + 3) &\ge \frac{11}{5}\\[5pt] 2x + 3 &\le -\frac{11}{5} \\[5pt] 2x &\le \frac{-11-15}{5} \\[5pt] 2x &\le \frac{-26}{5} \\[5pt] x &\le \frac{-13}{5} \end{align}$$ $x \in (-\infty, \; -\frac{13}{5}] \cup [-\frac{2}{5}, \infty)$ |
8. |
$-2|5 - x| \lt -8$ Solutionrearrange: $|5 - x| \gt 4$ $$ \begin{align} \color{#E90F89}{\text{I.}} \: 5 - x &\gt 4 \\[5pt] -x &\gt -1 \\[5pt] x &\lt 1 \\[9pt] \color{#E90F89}{\text{II.}} \: x - 5 &\gt 4 \\[5pt] x &\gt 9 \end{align}$$ $x \in (-\infty, \; 1) \cup (9, \infty)$ |
9. |
$1 \lt \left| x - \frac{7}{3} \right| + \frac{11}{3}$ Solutionrearrange: $$ \begin{align} \frac{3 - 11}{3} &\lt \left|x - \frac{7}{3} \right| \\[5pt] -\frac{8}{3} &\lt \left|x - \frac{7}{3} \right| \end{align}$$ $$ \begin{align} \color{#E90F89}{\text{I.}} \: -\frac{8}{3} &\lt x - \frac{7}{3} \\[5pt] -\frac{1}{3} &\lt x \\[9pt] \color{#E90F89}{\text{II.}} \: -\frac{8}{3} &\lt \frac{7}{3} - x \\[5pt] -\frac{15}{3} &\lt -x \\[5pt] 5 &\gt x \end{align}$$ $x \in \left(-\frac{1}{3}, \; 5 \right)$ |
10. |
$4 + \left|3 - \frac{x}{2} \right| \ge 9$ Solutionrearrange to: $$\left|3 - \frac{x}{2} \right| \ge 5$$ $$ \begin{align} \color{#E90F89}{\text{I.}} \: 3 - \frac{x}{2} &\ge 5 \\[5pt] -\frac{x}{2} &\ge 2 \\[5pt] x &\le -4 \\[9pt] \color{#E90F89}{\text{II.}} \: \frac{x}{2} - 3 \ge 5 \\[5pt] \frac{x}{2} \ge 8 \\[5pt] x &\ge 16 \end{align}$$ $x \in (-\infty, \; -4] \cup [16, \; \infty)$ |
11. |
$|3x - 4| + 9 \gt 5$ Solutionrearrange to: $$|3x - 4| \gt -4$$ $$ \begin{align} \color{#E90F89}{\text{I.}} \: 3x - 4 &\gt -4 \\[5pt] 3x &\gt 0 \\[5pt] x &\gt 0 \\[9pt] \color{#E90F89}{\text{II.}} \: 4 - 3x &\gt -4 \\[5pt] -3x &\gt -8 \\[5pt] x &\lt \frac{8}{3} \end{align}$$ $x \in \left(0, \; \frac{8}{3} \right)$ |
12. |
$3 + 4|3x + 7| \ge -89$ Solutionrearrange to: $$|3x + 7| \ge \frac{-89 - 3}{4} = 23 $$ $$ \begin{align} \color{#E90F89}{\text{I.}} \: 3x + 7 &\ge 23 \\[5pt] 3x &\ge 16 \\[5pt] x &\ge \frac{16}{3} \\[9pt] \color{#E90F89}{\text{II.}} \: -(3x + 7) &\ge 23 \\[5pt] 3x + 7 &\le -23 \\[5pt] 3x &\le -30 \\[5pt] x &\le -10 \end{align}$$ $x \in (-\infty, \; 10] \cup \left[\frac{16}{3}, \; \infty \right]$ |
13. |
$4|6 - 3x| + 8 \le 24$ Solutionrearrange to: $$|6 - 3x| \le 4 $$ $$ \begin{align} \color{#E90F89}{\text{I.}} \: 6 - 3x &\le 4 \\[5pt] -3x &\le -2 \\[5pt] x &\ge \frac{2}{3} \\[9pt] \color{#E90F89}{\text{II.}} \: 3x - 6 &\le 4 \\[5pt] 3x &\le 10 \\[5pt] x &\le \frac{10}{3} \end{align}$$ $x \in \left[\frac{2}{3}, \; \frac{10}{3} \right]$ |
14. |
$7 - |2x - 5| \gt 4$ Solutionrearrange to: $$|2x - 5| \lt 3 $$ $$ \begin{align} \color{#E90F89}{\text{I.}} \: 2x - 5 &\lt 3 \\[5pt] 2x &\lt 8 \\[5pt] x &\lt 4 \\[9pt] \color{#E90F89}{\text{II.}} \: 5 - 2x &\lt 3 \\[5pt] -2x &\lt -2 \\[5pt] x &\gt 1 \end{align}$$ $x \in \left[\frac{2}{3}, \; \frac{10}{3} \right]$ |
15. |
$3 - 2|3x - 1| \ge -7$ Solutionrearrange to: $$|3x - 1| \le 5 $$ $$ \begin{align} \color{#E90F89}{\text{I.}} \: 3x - 1 &\le 5 \\[5pt] 3x &\le 6 \\[5pt] x &\le 2 \\[9pt] \color{#E90F89}{\text{II.}} \: 1 - 3x &\le 5 \\[5pt] -3x &\le 4 \\[5pt] x &\ge -\frac{4}{3} \end{align}$$ $x \in \left[-\frac{4}{3}, \; 2 \right]$ |
16. |
$4 - 6|-6 + 3x| \le -4$ Solutionrearrange to: $$|3x - 6| \ge \frac{4}{3}$$ $$ \begin{align} \color{#E90F89}{\text{I.}} \: 3x - 6 &\ge \frac{4}{3} \\[5pt] 3x &\ge \frac{22}{3} \\[5pt] x &\ge \frac{22}{9} \\[9pt] \color{#E90F89}{\text{II.}} \: 6 - 3x &\ge \frac{4}{3} \\[5pt] -3x &\ge -\frac{14}{3} \\[5pt] x &\le \frac{14}{9} \end{align}$$ $x \in \left(-\infty, \; \frac{14}{9}\right] \cup \left[ \frac{22}{9}, \; \infty \right)$ |
17. |
$6 - 3|1 - 4x| \lt -2$ Solutionrearrange to: $$|1 - 4x| \gt \frac{8}{3}$$ $$ \begin{align} \color{#E90F89}{\text{I.}} \: 1 - 4x &\gt \frac{8}{3} \\[5pt] -4x &\gt \frac{5}{3} \\[5pt] x &\lt -\frac{5}{12} \\[9pt] \color{#E90F89}{\text{II.}} \: 4x - 1 &\gt \frac{8}{3} \\[5pt] 4x &\gt \frac{11}{3} \\[5pt] x &\gt \frac{11}{12} \end{align}$$ $x \in \left(-\infty, \; -\frac{5}{12}\right) \cup \left( \frac{11}{12}, \; \infty \right)$ |
18. |
$\frac{|3 + x|}{7} \le 5$ Solutionrearrange to: $$|3 + x| \le 5$$ $$ \begin{align} \color{#E90F89}{\text{I.}} \: 3 + x &\le 5 \\[5pt] x &\le 2 \\[9pt] \color{#E90F89}{\text{II.}} \: -(3 + x) &\gt 5 \\[5pt] 3 + x &\ge -5 \\[5pt] x &\ge -8 \end{align}$$ $x \in [-8, \; 2]$ |
19. |
$\frac{|2 + 3x|}{3} \ge 4$ Solutionrearrange to: $$|2 + 3x| \ge 12$$ $$ \begin{align} \color{#E90F89}{\text{I.}} \: 2 + 3x &\ge 12 \\[5pt] 3x &\ge 10 \\[5pt] x &\ge \frac{10}{3} \\[9pt] \color{#E90F89}{\text{II.}} \: -(2 + 3x) &\ge 12 \\[5pt] 2 + 3x &\le -12 \\[5pt] 3x &\le -14 \\[5pt] x &\le -\frac{14}{3} \end{align}$$ $x \in \left(-\infty, \; -\frac{14}{3}\right] \cup \left[ \frac{10}{3}, \; \infty \right)$ |
20. |
$\left|x - \frac{1}{2} \right| - 5 \lt -1$ Solutionrearrange to: $$\left| x - \frac{1}{2} \right| \lt 4$$ $$ \begin{align} \color{#E90F89}{\text{I.}} \: x - \frac{1}{2} &\lt 4\\[5pt] x &\lt \frac{9}{2} \\[9pt] \color{#E90F89}{\text{II.}} \: \frac{1}{2} - x &\lt 4 \\[5pt] -x &\lt \frac{7}{2} \\[5pt] x &\gt -\frac{7}{2} \end{align}$$ $x \in \left(-\frac{7}{2}, \; \frac{9}{2} \right)$ |
A caveat is a warning that some specific condition(s) or exception(s) might apply to a statement.
For example, Bovines produce most of the milk for human consumption in the U.S., with the caveat that milk is produced only by the females (cows).
xaktly.com by Dr. Jeff Cruzan is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. © 2012-2019, Jeff Cruzan. All text and images on this website not specifically attributed to another source were created by me and I reserve all rights as to their use. Any opinions expressed on this website are entirely mine, and do not necessarily reflect the views of any of my employers. Please feel free to send any questions or comments to jeff.cruzan@verizon.net.