Trigonometric integrals span two sections, another page on integrals containing only trigonometric functions, and this page integration of specific algebraic functions by substitution of variables with trig. functions. Both are useful, so make sure to check out the first, too.
In another section we looked at integrals containing only powers of trigonometric functions, such as
$$ \begin{align} &\int \text{sin}^3(x) \, dx \\[5pt] &\int \text{sin}^2(x) \, \text{tan}(x) \, dx \\[5pt] &\int \text{cos}^4(x) \, \text{sin}^2(x) \, dx \end{align}$$
We developed a couple of techniques, relying on key trigonometric identities, to solve them. These are an important class of integrals in certain fields of mathematics, particularly in the field of Fourier series and the Fourier transform.
In this section, we'll look at quite a different set of integrands, functions that look like this:
$$ \begin{align} &\sqrt{a^2 - x^2} \\[5pt] &\sqrt{a^2 + x^2} \\[5pt] &\sqrt{x^2 - a^2} \end{align}$$
The particular algebraic properties of the trigonometric functions, mainly the Pythagorean identities,
$$ \begin{align} \text{sin}^2(\theta) + \text{cos}^2(\theta) &= 1 \\[5pt] \text{tan}^2(\theta) + 1 &= \text{sec}^2(\theta) \\[5pt] \text{cot}^2(\theta) + 1 &= \text{csc}^2(\theta) \end{align}$$
will give us the hook we need to solve some otherwise very tricky integrals.
Let's start with the first radical expression in the list above, $\sqrt{a^2 - x^2}$. We begin by introducing a dummy variable, $t$, and making the substitution $x = a \, \text{sin}(t)$. We'll get rid of the $t$ later when we're done with it, so hang in there. Here's the process:
$$ \begin{align} \sqrt{a^2-x^2} &= \sqrt{a^2 - a^2 \text{sin}^2(t)} \\[5pt] &= \sqrt{a^2 \, (1 - \text{sin}^2(t))} \\[5pt] &= \sqrt{a^2 \, \text{cos}^2(t)} \\[5pt] &= a \, \text{cos}(t) \end{align}$$
The substitution has reduced a radical to a simple trigonometric expression, the integral of which we know, so there's hope for this kind of substitution.
In a similar way we can substitute $x = a \, \text{tan}(t)$ for the $x$ in the second radical and $x = a \, \text{sec}(t)$ for the $x$ in the third. Each substitution leads to a simple trigonometric function.
See the table below for a summary of integration by trig. substitution. Afterward, the best way to learn is by example, so read through the examples below and check out the video examples.
| Use this substitution |
in this expression |
...here's the arithmetic |
simplified radical |
domain of $t$ |
|---|---|---|---|---|
| $x = a \, \text{sin}(t)$ | $\sqrt{a^2 - x^2}$ | $$ \begin{align} \sqrt{a^2-a^2 \text{sin}^2 (t)} &= \sqrt{a^2(1-\text{sin}^2 (t))} \\[5pt] &= \sqrt{a^2 \text{cos}^2 (t)} \end{align}$$ | $a \, \text{cos}(t)$ | $t \in \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$ |
| $x = a \, \text{tan}(t)$ | $\sqrt{a^2 + x^2}$ | $$ \begin{align} \sqrt{a^2+a^2 \text{tan}^2 (t)} &= \sqrt{a^2(1+\text{tan}^2 (t))} \\[5pt] &= \sqrt{a^2 \text{sec}^2(t)} \end{align}$$ | $= a \, \text{sec}(t)$ | $t \in \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$ |
| $x = a \, \text{sec}(t)$ | $\sqrt{x^2 - a^2}$ | $$ \begin{align} \sqrt{a^2 \text{sec}^2 (t) - a} &= \sqrt{a^2(\text{sec}^2 (t) - 1)} \\[5pt] &= \sqrt{a^2 \text{tan}^2 (t)} \end{align}$$ | $= a \, \text{tan}(t)$ | $t \in \left[ 0, 2 \pi \right]$ |
To begin, consult the table above and make the substitution $x = a \, \text{sin}(t)$, where $a = 9$ (the square root of 81):
$$ \begin{align} \text{let } \; x &= 9 \, \text{sin}(t) \\[5pt] \text{then } \; x^2 &= 81 \, \text{sin}^2(t) \\[5pt] \text{and } \; dx &= 9 \, \text{cos}(t) \, dt \end{align}$$
The integral is
$$\int \sqrt{81 - x^2} \, dx$$
The integrand under the radical is $9^2 (1 - \text{sin}^2(t))$, which is a perfect square:
$$ \begin{align} 81 - 81 \text{sin}^2(t) &= 81[1 - \text{sin}^2(t)] \\[5pt] &= 81 \text{cos}^2(t) \end{align}$$
That last step uses the Pythagorean identity, $\text{sin}^2(t) + \text{cos}^2(t) = 1$. Now the integrand, including $dx$, can be written:
$$\int \sqrt{81 \, \text{cos}^2(t)} \cdot 9 \text{cos}(t) \, dt$$
The substitution allows us to take the square root:
$$\int 9 \text{cos}(t) \cdot 9 \text{cos}(t) \, dt$$
Now move the constant outside of the integral and use our co\text{sin}e power-reduction formula to change the $\text{cos}^2(t)$ term into something we can integrate, just as in the examples above. Integrate the $\text{cos}(2t)$ integrand with simple u-substitution.
$$81 \int \text{cos}^2(t) \, dt = \frac{81}{2} \int 1 + \text{cos}(2t) \, dt$$
The integral in terms of the dummy variable $t$ is now easy to write, and we can substitute expressions containing $x$ for $t$ and $\text{sin}(t)$. We also remember here that $\text{sin}(2x) = 2 \, \text{sin}(x) \, \text{cos}(x)$ is another of our double-angle identities:

$$= \frac{81}{2} \text{sin}^{-1}\left( \frac{x}{9}\right) + \frac{81}{4} \cdot 2 \text{sin}(t) \text{cos}(t)$$
And finally, using our triangle to replace $\text{sin}(t)$ and $\text{cos}(t)$ with functions of $x$ gives:
$$= \frac{81}{2} \text{sin}^{-1}\left(\frac{x}{9}\right) + \frac{81}{4} \frac{2x}{9} \frac{\sqrt{81 - x^2}}{9}$$
Now let's go back to the definition of t that we started with, namely that $\text{sin}(t) = x/9$, and construct the right triangle (angles not to scale) that goes with it. Note that we use the Pythagorean theorem to get the length of the lower side of the triangle.

That gives us $\text{cos}(t)$, so we can plug $\text{sin}(t)$ and $\text{cos}(t)$ into the previous result to get
$$= \frac{81}{2} \text{sin}^{-1}\left( \frac{x}{9}\right) + \frac{81}{4} \cdot 2 \text{sin}(t) \text{cos}(t)$$
And finally, using our triangle to replace $\text{sin}(t)$ and $\text{cos}(t)$ with functions of $x$ gives:
$$= \frac{81}{2} \text{sin}^{-1}\left(\frac{x}{9}\right) + \frac{81}{4} \frac{2x}{9} \frac{\sqrt{81 - x^2}}{9}$$
Now some easy cancellation gives us the final integral:
$$\frac{81}{2} \text{sin}^{-1}\left(\frac{x}{9}\right) + \frac{1}{2} x \sqrt{81 - x^2} + C$$
This solution is probably not what you might have guessed from a look at the integral. Integration by substitution is a powerful technique that can get us these solutions.
This integral looks like the form
$$\int \sqrt{a^2 + b^2} \, dx$$
except for the number (9) in front of the $x^2$. We can remove that temporarily by dividing by the square root of 9, and multiplying outside the integrand by 3. We'll have to keep that 3 around, but that's OK:
$$3 \int \frac{\sqrt{4 + 9x^2}}{\sqrt{9}} \, dx$$
The new integral now has the form we'd like:
$$3 \int \sqrt{\frac{4}{9} + x^2} \, dx$$
Consulting the table above, we see that this substitution works:
$$ \begin{align} \text{let } \; x &= \frac{2}{3} \, \text{tan}(t), \\[5pt] \text{then } \; x^2 &= \frac{4}{9} \, \text{tan}^2(t) \\[5pt] \text{and } \; dx &= \frac{2}{3} \, \text{sec}^2(t) \, dt \end{align}$$
The radical in the integrand now reduced to
$$ \begin{align} \sqrt{\frac{4}{9} + x^2} &= \sqrt{\frac{4}{9} + \frac{4}{9} \text{tan}^2(t)} \\[5pt] &= \sqrt{\frac{4}{9}[1 + \text{tan}^2(t)]} \\[5pt] &= \sqrt{\frac{4}{9} \text{sec}^2(t)} \\[5pt] &= \frac{2}{3} \text{sec}(t) \end{align}$$
So the integral can now be rewritten in terms of trig functions:
$$3 \int \sqrt{\frac{4}{9} + x^2} \; \rightarrow \; 3 \int \frac{2}{3} \text{sec}(t) \frac{2}{3} \text{sec}^2(t) \, dt$$
It simplifies to
$$= \frac{4}{3} \int \text{sec}^3 (t) \, dt$$
Our strategy to solve it is to divide the cubed term into two terms. (I'm omitting the 4/3 for now and I'll hopefully remember to put it back later.)
$$\int \text{sec}^3(t) \, dt = \int \text{sec}(t) \text{sec}^2(t) \, dt$$
We can do this integral by parts. Here are the substitutions:
$$ \begin{matrix} \text{let } \; u = \text{sec}(t) && dv = \text{sec}^2(t) \, dt \\[5pt] du = \text{sec}(t) \, \text{tan}(t) \, dt && v = \text{tan}(t) \end{matrix}$$
The new expression, including a new integral to tackle, is
$$\int \text{sec}^3(t) \, dt = \text{sec}(t) \text{tan}(t) - \int \text{sec}(t)\cdot \text{tan}^2(t) \, dt$$
Now we can do the second integral by replacing $\text{tan}^2(t)$ with $\text{sec}^2(t)-1$, which is one form of the Pythagorean identity.
$$ \begin{align} &\int \text{sec}^3(t) \, dt \\[5pt] &= \text{sec}(t) \text{tan}(t) - \int \text{sec}(t) [\text{sec}^2(t) - 1] \, dt \end{align}$$
Multiplying through by $\text{sec}(t)$ on the right side gives us two integrals. Notice that the integral of $\text{sec}^3(t)$ reappears, but with opposite sign, so we can move it to the left side by addition (arrow).

Now the integral of $\text{sec}(t)$ was worked out elsewhere, it is $ln|\text{sec}(t) + \text{tan}(t)|$:
$$2 \int \text{sec}^3(t) \, dt = \text{sec}(t) \cdot \text{tan}(t) - ln|\text{sec}(t) + \text{tan}(t)| + C$$
We can finally solve for the original integral, remembering to bring our factor of 4/3 back in:
$$\int \text{sec}^3(t) \, dt = \frac{4}{3}\frac{1}{2}\left[ \text{sec}(t) \cdot \text{tan}(t) - ln|\text{sec}(t) + \text{tan}(t) + C \right]$$
The solution, in terms of the dummy variable $>t$ is:
$$= \frac{2}{3} \left[ \text{sec}(t) \cdot \text{tan}(t) = ln|\text{sec}(t) + \text{tan}(t)| + C\right]$$
Now we can construct a triangle based on our initial assumption, $\text{tan}(t) = \frac{3x}{2}$

The hypotenuse was found using the Pythagorean theorem. We can now use the triangle to find $\text{tan}(t)$ and $\text{sec}(t)$ in terms of the original variable $x$:
$$= \frac{\sqrt{4 + 9x^2}}{2} \frac{3x}{2} - ln \left| \frac{\sqrt{4 + 9x^2}}{2} + \frac{3x}{2} \right| + C$$
OK, so that was a long slog, but hopefully you can see that there's just no other way to do that integral on paper. Our only other choice would have been to estimate a definite integral by numerical integration.
The first thing to do is make a substitution for the ex terms. This one fits nicely:
$$\text{Let } u = e^x, \; \text{ then } u^2 = e^{2x}$$
(remember the laws of logs: $(e^x)^2 = e^{2x}$). We also need the differential in terms of $u$:
$$\text{and } du = e^x \, dx$$
The new integral is
$$\int \frac{du}{7 + u^2}$$
Now this has a form for which we can use the $x = a·\text{tan}(t)$ substitution:
$$ \begin{align} \text{Let } u = \sqrt{7} \, \text{tan}(t) \\[5pt] du = \sqrt{7} \, \text{sec}^2(t) \end{align}$$
The denominator gets substituted like this:
$$ \begin{align} u^2 &= 7 \, \text{tan}^2(t) \\[5pt] 7 + u^2 &= 7 + 7 \, \text{tan}^2(t) \\[5pt] &= 7(1 + \text{tan}^2(t)) \\[5pt] &= 7 \, \text{sec}^2(t) \end{align}$$
Now substituting our expressions for $du$ and for $7 + u^2$, we get the integral in terms of $t$:
$$\int \frac{\sqrt{7} \text{sec}^2(t)}{7 \text{sec}^2(t)} \, dt$$
There's a nice cancellation, yielding the simplest of integrals:
$$\int \frac{\sqrt{7} \text{sec}^2(t)}{7 \text{sec}^2(t)} \, dt = \int \frac{dt}{\sqrt{7}}$$
The solution, in terms of the dummy variable t is
$$= \frac{1}{\sqrt{7}} t$$
Now we begin to walk the solution backward through our two substitutions; first to $u$:
$$\frac{1}{\sqrt{7}} \text{tan}^{-1} \left() \frac{u}{7} \right)$$
That inverse tangent term comes directly from our substitution $u = \sqrt{7} \text{tan}(t)$. Then re-substituting $e^x$ for $u$, we get.
$$= \frac{1}{\sqrt{7}} \text{tan}^{-1} \left( \frac{e^x}{7} \right) + C$$
Try doing these integrals by trig. substitution. Some of them are tricky. Try u\text{sin}g the solutions as hints to get you going when you stall. You'll learn more that way.
$$\int \frac{1}{\sqrt{x^2 - 25}} \, dx$$
$$ \begin{align} Let \; x &= 5 \text{sec}(t) \\[5pt] x^2 &= 25 \text{sec}^2(t) \\[5pt] x^2 - 25 &= 25(\text{sec}^2(t) - 1) = 25 \text{tan}^2(t)\\[5pt] \sqrt{x^2 - 25} &= 5 \text{tan}(t) \; and \\[5pt] dx &= 5 \text{sec}(t) \text{tan}(t) \, dt \\[5pt] \longrightarrow \int \frac{5 \text{sec}(t) \text{tan}(t)}{5 \text{tan}(t)} &= \int \text{sec}(t) \, dt \\[5pt] &= ln|\text{sec}(t) + \text{tan}(t)| + C \end{align}$$
$$Now \; \text{sec}(t) = \frac{x}{5} \text{ gives us this triangle:}$$

$$ \begin{align} \int \frac{1}{\sqrt{x^2 - 25}} \, dx &= ln \left| \frac{x}{5} + \frac{\sqrt{x^2 - 25}}{5} \right| + C \\[5pt] &= ln \left| \frac{x + \sqrt{x^2 - 25}}{5} \right| + C \end{align}$$
$$\int \frac{x}{\sqrt{16 - x^2}} \, dx$$
$$ \begin{align} Let \; x &= 4 \text{sin}(t) \\[5pt] x^2 &= 16 \text{sin}^2(t) \\[5pt] 16 - x^2 &= 16(1 - \text{sin}^2(t)) = 16 \text{cos}^2(t)\\[5pt] \sqrt{16 - x^2} &= 4 \text{cos}(t) \; and \\[5pt] dx &= 4 \text{cos}(t) \, dt \\[5pt] \longrightarrow \int \frac{4 \text{cos}(t)}{4 \text{cos}(t)} \, dt &= \int \, dt = t + C \end{align}$$
$$Now \; \text{sin}(t) = \frac{x}{4} \; so \; \; t = \text{sin}^{-1}\frac{x}{4}$$
$$= \int \frac{x}{\sqrt{16 - x^2}} \, dx = \text{sin}^{-1} \left( \frac{x}{4} \right) + C$$
$$\int \frac{x}{\sqrt{x^2 + 1}} \, dx$$
$$ \begin{align} Let \; x &= 1\cdot \text{tan}(t) \\[5pt] x^2 &= \text{tan}^2(t) \\[5pt] x^2 + 1 &= \text{tan}^2(t) + 1 = \text{sec}^2(t)\\[5pt] \sqrt{x^2 + 1} &= \text{sec}(t) \; and \\[5pt] dx &= \text{sec}^2(t) \, dt \\[5pt] \int \frac{x}{\sqrt{x^2 + 1}} \, dx &\longrightarrow \int \frac{\text{tan}(t) \text{sec}^2(t)}{\text{sec}(t)}\, dt \\[5pt] &= \int \text{sec}(t)\text{tan}(t) \, dt \\[5pt] &= \text{sec}(t) + C \end{align}$$
$$\text{Now} \; \text{tan}(t) = \frac{x}{1} \text{ gives us this right triangle:}$$

$$\int \frac{1}{\sqrt{x^2 + 1}} \, dx = \sqrt{x^2 + 1} + C$$
$$\int \frac{x^2}{\sqrt{x^2 + 9}} \, dx$$
$$\int \frac{x^2}{\sqrt{x^2 + 9}} \, dx$$
$$ \begin{align} Let \; x &= 3 \text{tan}(t) \\[5pt] x^2 &= 9 \text{tan}^2(t) \\[5pt] x^2 + 9 &= 9(\text{tan}^2(t) + 1) = 9 \text{sec}^2(t) \\[5pt] \sqrt{x^2 + 9} &= 3 \text{sec}(t), \; and \\[5pt] x^2 &= 9 \text{tan}^2(t), \; and \\[5pt] dx &= 3 \text{sec}^2(t) \, dt \\[5pt] \int \frac{x^2}{\sqrt{x^2 + 9}} \, dx &\longrightarrow \int \frac{9 \text{tan}^2(t) \cdot 3 \text{sec}^2(t) \, dt}{3 \text{sec}(t)} \\ &= 9 \int \text{tan}^2(t) \text{sec}(t) \, dt \end{align}$$
Now this integral can be done using all of the rest of our integration skill ... hold on: First use the identity $\text{tan}^2(x) = \text{sec}^2(x) - 1$, so our integral breaks into two parts — and let's leave the 9 off for now to simplify things; we'll put it back later.
$$ \int \text{sec}^3(t)\, dt - \int \text{sec}(t) \, dt$$
The integral on the right is $ \int \text{sec}(t) \, dt = ln|\text{sec}(t) + \text{tan}(t)| + C$
The integral on the left can be done by parts, letting $u = \text{sec}(t)$, and $dv = \text{sec}^2(t) \, dt$. Then $du = \text{sec}(t) \text{tan}(t) \, dt$ and $v = \text{tan}(t)$, so for the left-side integral, we have:
$$\int \text{sec}^3(x) \, dt = \text{sec}(t) \text{tan}(t) - \int \text{tan}^2(t) \text{sec}(t) \, dt$$
Now using the same identity as above, we have:
$$ \begin{align} \int \text{sec}^3(t) \, dt &= \text{sec}(t) \text{tan}(t) - \int (\text{sec}^2(t) - 1) \text{sec}(t) \, dt \\[5pt] &= \text{sec}(t) \text{tan}(t) - \left[ \int \text{sec}^3(t) \, dt - \int \text{sec}(t) \, dt \right] \end{align}$$
So we have:
$$2\int \text{sec}^3(x) \, dt = \text{sec}(t) \text{tan}(t) - ln|\text{sec}(t) + \text{tan}(t)|$$
$$\int \text{sec}^3(t)\, dt = \frac{1}{2} \text{sec}(t) \text{tan}(t) + \frac{1}{2} ln|\text{sec}(t) + \text{tan}(t)|$$
Now putting it all together, we get:
$$\int \frac{x^2}{\sqrt{x^2 + 9}} \, dx = \frac{9}{2} \text{sec}(t) \text{tan}(t) - \frac{9}{2} ln|\text{sec}(t) + \text{tan}(t)|$$
Now our original trig substitution was $\text{tan}(t) = \frac{x}{3}$, which gives us this right triangle:

We can use that triangle to get the final integral:
$$ \begin{align} \int \frac{x^2}{\sqrt{x^2 + 9}} \, dx &= \frac{9}{2} \frac{x \sqrt{x^2 + 9}}{9} - \frac{9}{2} ln \left| \frac{\sqrt{x^2 + 9}}{3} + \frac{x}{3}\right| \\[5pt] &= \frac{1}{2} x \sqrt{x^2 + 9} - \frac{9}{2} ln\left|\frac{\sqrt{x^2 + 9}}{3} + \frac{x}{3}\right| \end{align}$$
$$\int \sqrt{1 - x^2} \, dx$$
$$ \begin{align} \text{Let } x &= \text{sin}(t) \\[5pt] \text{then } dx &= \text{cos}(t) \, dt \\[5pt] \text{and } 1 - x^2 &\rightarrow 1 - \text{sin}^2(t) = \text{cos}^2(t) \end{align}$$
So our integral becomes:
$$ \begin{align} \int \sqrt{\text{cos}^2(t)} \, \text{cos}(t) \, dt &= \int \, \text{cos}^2(t) \, dt \\[5pt] &= \int \frac{1 + \text{cos}(2t)}{2} \, dt \\[5pt] &= \frac{1}{2} \int [1 + \text{cos} (2t)] \, dt \\[5pt] &= \frac{1}{2} t + \frac{1}{2} \text{sin}(2t) + C \\[5pt] &= \frac{1}{2} t + \frac{1}{2} 2 \text{sin}(t) \, \text{cos}(t) + C \end{align}$$
We used the cosine double-angle identity and $\text{sin}(2x) = 2\cdot \text{sin}(x)\text{cos}(x)$ in that sequence above. Now this triangle, which we draw from $x = \text{sin}(t)$ above, will help to translate our answer from $t$'s to $x$'s:

$$= \frac{1}{2}\text{sin}^{-1}(x) + x \sqrt{1 - x^2} + C$$
$$\int \frac{1}{x^2 \sqrt{x^2 + 4}} \, dx$$
$$ \begin{align} \text{Let } x &= 2 \,\text{tan}(t) \\[5pt] \text{then } x^2 &= 4 \, \text{tan}^2(t), \\[5pt] dx &= 2\,\text{sec}^2(t) \, dt, \\[5pt] \text{and } \sqrt{x^2 + 4} &= \sqrt{4 \text{sec}^2(t)} = 2 \, \text{sec}(t) \end{align}$$
Substituting all of these new pieces into our integral gives
$$ \begin{align} &\int \frac{2 \text{sec}^2(t) \, dt}{4 \text{tan}^2(t) \cdot 2 \text{sec}(t)} \, dt \\[5pt] &= \frac{1}{4}\int \frac{\text{sec}(t) \, dt}{\text{tan}^2(t)} \\[5pt] &= \frac{1}{4} \int \frac{\text{cos}(t)}{\text{sin}^2(t)} \, dt \end{align}$$
Let $u = \text{sin}(t)$, then $du = \text{cos}(t) dt$
$$ \begin{align} \rightarrow &\frac{1}{4} \int \frac{du}{u^2} \\[5pt] &= \frac{-1}{4u} \rightarrow \frac{-1}{4 \text{sin}(t)} + C\\[5pt] \end{align}$$
Now this triangle, derived from the equation $\frac{x}{2} = \text{tan}(t)$ allows us to re-substitute $x$'s for $t$'s:

$$= -\frac{\sqrt{x^2 + 4}}{4x} + C$$
$$\int \frac{1}{(x^2 + 2x + 2)^2} \, dx$$
This one is tricky, but hang in. It's a good reminder that sometimes integrals take a little persistence and a lot of ingenuity. First recognize that the denominator is somewhat similar to the $x^2+a^2$ form that would give us a $x = \text{tan}(t)$ type of substitution.
If we both add and subtract 1 from the denominator, we get:
$$ \begin{align} (x^2 + 2x + 2)^2 &= (x^2 + 2x + 1 + 2 - 1)^2 \\[5pt] &= (x^2 + 2x + 1 + 1)^2 \\[5pt] &= ((x + 1)^2 + 1)^2 \end{align}$$
Let (x + 1) = \text{tan}(t), then dx = \text{sec}2t dt
$$ \begin{align} ((x + 1)^2 + 1)^2 &= (\text{tan}^2(t) + 1)^2 \\[5pt] &= (\text{sec}^2(t))^2 \\[5pt] &= \text{sec}^4(t) \end{align}$$
Now if we do all of the substitutions, our integral is:
$$\int \frac{\text{sec}^2(t)}{\text{sec}^4(t)} \, dt = \int \frac{dt}{\text{sec}^2(t)} = \int \text{cos}^2(t) \, dt$$
We can use the co\text{sin}e power reduction formula to convert this integral:
$$ \begin{align} \int \text{cos}^2(t) \, dt &= \int \frac{1 + \text{cos}(2t)}{2} \, dt \\[5pt] &= \int \frac{1}{2} \, dt + \frac{1}{2} \int \text{cos}(2t) \, dt \\[5pt] &= \frac{1}{2}t + \frac{1}{4} \text{sin}(2t) + C \\[5pt] &= \frac{1}{2}t + \frac{1}{2} \text{sin}(t) \text{cos}(t) + C \end{align}$$
In the last step above we used the sine double-angle identity, $\text{sin}(2x) = 2 \text{sin}(x)\text{cos}(x)$. Now we can construct this triangle to move from $t$'s back to $x$'s:

Our result translates to:
$$ \begin{align} &= \frac{1}{2} \text{tan}^{-1}(t) + \frac{1}{2} (2) \frac{x + 1}{\sqrt{x^2 + 2x + 2}} \frac{1}{\sqrt{x^2 + 2x + 2}} \\[5pt] &= \frac{1}{2} \text{tan}^{-1}(t) + \frac{x + 1}{x^2 + 2x + 2} + C \end{align}$$
$$\int \frac{x}{(9 - x^2)^{3/2}} \, dx$$
$$ \begin{matrix} \text{Let } x = 3 \text{sin}(t) && dx = 3 \text{cos}(t) \, dt \\[5pt] x^2 = 9 \text{sin}^2(t) && 9 - x^2 = 9(1 - \text{sin}^2(t)) = 9 \text{cos}^2(t) \end{matrix}$$
So our integral, with all substitutions, is:
$$ \begin{align} \int &\frac{3 \text{sin}(t) 3 \text{cos}(t) \, dt}{(9 \, \text{cos}^2(t))^{3/2}} \\[5pt] &= \frac{9}{27} \int \frac{\text{sin}(t) \, dt}{\text{cos}^2 (t)} \\[5pt] &= \frac{1}{3} \int \frac{\text{sin}(t) \, dt}{\text{cos}^2(t)} \end{align}$$
$$\text{Let } u = \text{cos}(t), \text{ then } du = -\text{sin}(t) \, dt$$
$$-\frac{1}{3} u^{-2} \, du = \frac{-1}{3u} \rightarrow \frac{-1}{3 \text{cos}(t)}$$
Now use this triangle, defined by $x = 3 \text{sin}(t)$, to replace the t's with x's.

$$= \frac{-1}{\sqrt{9 - x^2}}$$
You can easily take the derivative of this solution to see that it returns the integrand. This one can actually be solved using simple $u$-substitution (did you notice?).
![]()
xaktly.com by Dr. Jeff Cruzan is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.© 2012-2019-2025, Jeff Cruzan. All text and images on this website not specifically attributed to another source were created by me and I reserve all rights as to their use. Any opinions expressed on this website are entirely mine, and do not necessarily reflect the views of any of my employers. Please feel free to send any questions or comments to jeff.cruzan@verizon.net.